Меню Рубрики

Летающий реактивный ранец. Реактивный рюкзак: первый успешный полёт с мягкой посадкой уже состоялся

» Реактивный ранец — сделать своими руками или купить

Реактивный ранец – технологичное устройство, благодаря которому людям удалось научиться перемещаться в пространстве нестандартным образом. Ранец реактивный — прообраз ракетного двигателя. Конструктивно аппарат выполнен по тем же технологиям образования тяги за счёт сброса реактивных газов. Но особенность реактивного модуля в виде ранца состоит в том, что применим он исключительно для одной персоны. Так, можно ли сделать реактивный ранец своими руками?

Как всегда всё началось с фантастической литературы и кинематографа. В современной интерпретации идею реактивного ранца подхватили создатели компьютерных игр. В результате дело дошло до реальных изобретений, начиная с 20-х годов прошлого века, с продолжением техно-эпопеи до настоящего времени.


Испытания изобретённых ракетных ранцев, как правило, проходят с участием добровольцев. Редкий инженер-изобретатель готов рискнуть лично испытать такое неоднозначное оборудование

Тема ракетных ранцев возбуждает современное общество неимоверно. В перспективе видятся уже массовые продажи ракетных модулей личного пользования и бесконечные очереди за такими установками. Ранцевый бум сопоставим с началом эры . Только вот ставки на реактивные ранцы не сравнить с автомобильными.

Ракетный ранец персонального пользования впервые упоминался в 1928 году. Тогда популярное журнальное издание опубликовало на страницах очередного выпуска фантастическую новеллу «Армагеддон 2419». Сюжетной картиной ракетным ранцам уделялось огромное внимание как средствам передвижения в недалёком будущем. Фактически автор рассказа оказался прав.

Однако создатель новеллы не угадал дату первых испытаний ракетных систем личного пользования. Первопроходцем здесь считают американца Томаса Мура – изобретателя аппарата «Джет Вест», которому в 1952 году первому удалось и продержаться в воздухе 2 секунды. За плечами Томаса был ракетный ранец.


Пока что летающего без проблем человека реально увидеть только на съёмочных площадках голливудских режиссёров, снимающих фантастические фильмы с летающими героями

Конструкция реактивного ранца

История конструирования подобных аппаратов сохранила сведения о двух видах прототипов:

  1. Оснащённого ракетным модулем (Rocket Belt).
  2. Оснащённого турбореактивным модулем (Jet Belt).

Конструкция аппаратов первого типа отличается простой схемой исполнения. Именно этот фактор стал причиной высокой популярности Rocket Belt.

При желании не исключена даже возможность сборки классической конструкции в условиях кустарного производства. Но преимущественный фактор Rocket Belt сводит на нет другой момент – существенное ограничение времени полёта.

Рекордный показатель для этих аппаратов — не более 30 секунд полёта. При этом расход перекиси водорода неимоверно высокий. Поэтому область применения аппаратов типа Rocket Belt пока что очерчена лишь границами показательных шоу. Здесь можно вспомнить Олимпиаду США (1984), где демонстрировался показательный полёт.


Сейчас уже есть модификации более продвинутые, чем та что на картинке. Способные перемещать человека по воздуху около 1 часа

Элементы реактивного модуля Rocket Belt:

  • прочный корсет (стеклопластик),
  • система крепёжных ремней,
  • шасси на базе лёгких металлических трубок,
  • пара баллонов с перекисью водорода,
  • баллон, заправленный сжатым азотом,
  • ракетный модуль на шарнирах.

Элементы ракетного модуля (Jet Belt):

  • газовый генератор,
  • реактивные сопла (2 шт.),
  • рычаги управления (2 шт.),
  • тяга поворотная,
  • механизм управления подачей топлива,
  • механизм управления реактивными соплами.

Реактивный ранец: основы технологии

Поворотной тягой поднимается клапан заправки топлива. Газообразный азот давлением 40-50 атмосфер давит массу перекиси водорода. Вещество устремляется в камеру генератора. Там — в камере, происходит активный контакт пластин серебра, обработанных нитратом самария и заполнившей камеру перекиси водорода.


Испытательный полёт среди небоскрёбов с ракетным ранцем Rocket Belt

Контакт сопровождается активной реакцией и способствует быстрому образованию парогазовой смеси. Полученная парогазовая среда высокой температуры и давления устремляется через каналы в область реактивных сопел.

Здесь газовая смесь резко расширяется, получает ускорение до сверхзвуковой скорости, выбрасывается наружу. Создаётся эффект реактивной тяги, благодаря которому допустимо воздействовать на объект, в частности — поднять объект в воздух.

Турбореактивный вариант устройства (Jet Belt)

Аппарат несколько иной конфигурации – турбореактивный ранец персонального пользования, изобрели в 1969 году. Прототип турбореактивного блока WR-19, массой 31 кг, создали инженеры Венделл Мур и Джон Халберт.


Эксперименты с этой модификацией турбореактивного ранца продолжаются до сего дня. Результаты положительного характера есть, но затраты на оборудование не позволяют запустить турбореактивный ранец в серийное производство

Первые испытания прототипа Jet Belt провели тем же годом и получили интересные результаты – перелёт расстояния в 100 метров на семиметровой высоте.

В основу энергетики Jet Belt заложено смешивание керосина и воздуха. Смесь сжимается до нескольких десятков атмосфер и подаётся компрессором в рабочую камеру — один из двух рабочих отсеков аппарата. Второй отсек выделен под модуль охлаждения, составляющий охлаждающий контур камеры сгорания.

Воздушно-керосиновая смесь, заполнив камеру сгорания, воспламеняется. Образовавшийся реактивный поток устремляется сквозь сопла наружу. Механизм управления соплами даёт возможность регулировать силу и направление реактивного потока.

Конструкция турбореактивного действия характерна выраженным КПД. Этот вариант установки показывает лучшие параметры полёта: продолжительности, ускорения, высоты. Но турбореактивным ранцам присущи сложность системы и значительные финансовые издержки производства.

Сделать подобные устройства своими руками невозможно тем более. Для этого требуется уникальное оборудование и специалисты. Разве если только попытаться соорудить реактивную установку самостоятельно чисто в целях эксперимента.

Реактивный ранец своими руками

Экспериментальная конструкция реактивного ранца, по сути, изготавливается своими руками в течение одного-двух рабочих дней. Для производства оборудования достаточно наличия стандартных слесарных навыков.


Вот такую, относительно простую с конструктивной точки зрения установку, вполне реально сделать своими руками за пару-тройку дней. При этом нет необходимости обладать профессиональными знаниями

Набор необходимых деталей самодельного устройства существенно отличается от того набора, что требуется для производства реально «подъёмных», профессионально сделанных моделей. Механику сборщику потребуются:

  1. Два металлических сопла.
  2. Стальная полоса (400х40х5).
  3. Лист жести (500х500х0,7).
  4. Шпильки стальные (2 шт.), подшипники (4шт.).
  5. Баллон с пропаном (малолитражный).
  6. Коллектор распределения газа.
  7. Два электродвигателя малогабаритных на 12В.
  8. Шланг высокого давления.
  9. Система радиоуправления.

Главный момент в этом деле — самодельная сборка реактивного ранца в рамках эксперимента позволяет лучше понять принцип работы устройств подобного типа. Также потенциальный сборщик сможет по существу оценить возможности реализации проекта.


Схема турбины: 1 — заборная лопасть; 2 — компрессор высокого давления; 3 — вал компрессора высокого давления; 4 — турбина высокого давления; 5 — компрессор низкого давления; 6 — вал низкого компрессора давления; 7 — камера сгорания; 8 — турбина низкого давления; 9 — сопло

Следует отметить: работа сборки оборудования достаточно опасная, сопряжена с практикой применения горючих веществ. Поэтому, прежде чем пытаться повторять эксперимент, следует выполнить все необходимые меры безопасности.

Подготовка комплектующих деталей и сборка

Сопла, подходящие для турбины реактивного ранца, можно отыскать на старом технологическом оборудовании, которое использовалось, к примеру, в молочной промышленности. Так, конструкции старых машин-дозаторов сливок и молока содержат массу подходящих деталей.


Вот такие, взятые от старого оборудования детали, после соответствующей обработки легко трансформируются в сопла для силовой турбины будущего летательного аппарата

Старые, покрытые ржавчиной сопла, необходимо очистить, тщательно обработать, отшлифовать. Эти операции несложно провести на широко распространенном инструментальном оборудовании. На боковинах сопел потребуется рассверлить отверстия для подключения втулок коллектора распределения газа.

Внутри сопел реактивного ранца размещаются малогабаритные электродвигатели. Моторы оснащаются длинным валом, по всей длине которого размещается ряд крыльчаток. Вал с крыльчатками закрепляется на установленные опорные подшипники. Изготавливают вал из металлических шпилек, а крыльчатки делаются из листа жести.


Крыльчатки разного диаметра делаются из листовой жести. Вырезается круглая форма, разделяется на секторы, затем ножницами режутся рабочие пластины

Подготовленные сопла скрепляют между собой при помощи сварки металлической полосой. Соединяют внутренние пространства сопел через коллектор распределения газа.

Детали коллектора распределения газа вытачивают на токарном станке. Пустотелые втулки с резьбой, сделанные собственными руками, легко собираются в единую конструкцию.


Вот таким способом — обычным высверливанием дрелью, изготавливаются пустотелые втулки коллектора распределения газовой смеси. Для межвтулочного соединения нарезается резьба

Также конструкция коллектора содержит:

  • обратные клапаны,
  • форсунки,
  • механизмы поджига газовой смеси.

Газ (пропан) поступает через коллектор в рабочую область сопел реактивного ранца от баллона с пропаном малого литража. Объёма баллона хватает на 30-40 минут интенсивного действия.

Система управления вентиляторами

Регулировкой скорости вращения крыльчаток вентиляторов (турбин) удобно наращивать или снижать мощность реактивного ранца. Поэтому экспериментальная конструкция оснащается радиопередатчиком и приёмниками, благодаря которым осуществляется управление моторами вентиляторов.


Вариант управления скоростью вращения электродвигателей турбины. Используется приёмопередающая радиоаппаратура, которой оснащаются, к примеру, детские радиоуправляемые игрушки

Модуль приёмно-передающего устройства можно купить уже готовый. Вполне подходящие приёмно-передающие устройства продаются недорого через популярные интернет магазины.

Электродвигатели вентиляторов подключаются через схему контроллера к приёмнику сигнала. системой поджига газовой смеси.

Передатчик в рамках эксперимента располагается на произвольном расстоянии. В последующем, если дело дойдёт до реального взлёта, устройство будет закрепляться на теле пилота.

Испытания реактивного ранца

Вот, собственно, и всё. Сделанный своими руками реактивный ранец успешно прошёл испытания в домашних условиях. Правда, в качестве перемещаемой в пространстве нагрузки выступал обычный торговый безмен.


С помощью нехитрого приспособления — электронных весов, удалось определить мощность реактивного ранца, сделанного своими руками. Как видно на дисплее весов, сила тяги составила чуть больше 6 кг

Судя по шкале безмена, сила тяги собранной своими руками турбины немного не достигла значения — 10 кг. Тем не менее, даже такой результат испытаний позволяет надеяться на будущее. Надежны действительно способны обратиться реальностью. В качестве подтверждения — видеоролики

Почти 12 миллионов просмотров собрал видеоролик полета над Дубаем на реактивном джетпаке Ив Росси. Швейцарский летчик и экстремал покорил мир своим изобретением и смог развить скорость до 193 км/ч. Отправляйтесь в Подмосковье и испытайте драйв, адреналин и восторг от полета!




Полет на реактивном ранце в Москве и Подмосковье по цене от 2 500 р. до 8 000 р.

Купить Заказать в 1 клик

Как устроен джет пак?

Jet Pack или реактивный ранец - это летательный аппарат, который надевается как рюкзак. Водные струи бьют из сопел за спиной участника, что и отрывает человека от воды. Рычаги для управления скоростью, направлением и высотой расположены по бокам под руками, обеспечивая мобильность. Полет на реактивном ранце проходит в положении сидя, что значительно облегчает процесс управления. Требуется меньше балансировки и ловкости.

В 60-х годах прошлого века ракетный ранец был на пике популярности.
Так, в новом фильме про Джеймса Бонда - «Шаровая молния», герой улетел с крыши замка от охраны на ранце.

Безопасно ли летать?

Полет на реактивно ранце проходит на системе Jetpack Zapata Racing. Помимо “сидячего” положения во время полета, сидение обладает положительной плавучестью, что держит на плаву во время падения или остановки на воде. Ранец оснащен пятиточечным страховочным ремнем и разрядником зажима, который управляется нажатием пальца.
Эффектности полету добавляет прозрачный дизайн сопельной системы. Так что во время полета вы сможете видеть мощный поток воды, который позволит летать.

Подготовка к полету:

Управлять летающим реактивным ранцем в Москве сложно, без инструктажа и подготовки на суше не обойтись. Инструктор познакомит с устройством и его управлением, техникой безопасности на воде и ответит на все вопросы, которые возникнут.
После - надевайте гидрокостюм, шлем и спасательный жилет. На лодке вас доставят на воду и после начнется освоение реактивного ранца.
Доступно такое развлечение только совершеннолетним лицам, вес которых от 50 до 100 кг.

На заметку:

Срок действия сертификата 8 месяцев. Обязательно нужно учитывать сезонность оказания услуг и условия их проведения (например, благоприятные погодные условия, график проведения, и т.д.), что согласовывается с организаторами при записи.
Доставка подарочных сертификатов на катание на реактивном ранце бесплатна в пределах МКАД на следующий день после заказа. .

Полет на реактивном ранце в Подмосковье

  1. Вейк-клуб (Пироговское водохранилище)

    Клуб находится на территории базы отдыха «Троицкое» в акватории Клязьминского и Пироговского водохранилищ. Клуб находится в 7 км от МКАД по Дмитровскому шоссе. Кроме парения над водой в живописных местах, каждого клиента ждет оборудованный пляж, кафе и гостиница.

  2. Серебряный бор

    Заповедный остров-парк в 20 минутах от центра столицы привлекает расположением. Живописная природа, множество пляжей и кафе позволяет отдохнуть в полной мере. А катания на флайборде и реактивном ранце привнесут в ваш отдых глоток свежести и адреналина.
    !Внимание: сезон 2019 года закрыт.

Заказать полет

Джет-пак

Реактивный ранец

Реактивный ранец (или ракетный ранец ), (англ. jet pack, rocket pack, rocket belt и др.) - персональный летательный аппарат , носимый на спине, позволяющий человеку подниматься в воздух посредством реактивной тяги . Тяга создаётся за счёт выбрасываемой двигателем вертикально вниз реактивной струи.

Различают два основных типа реактивных ранцев:

  • ранец с ракетным двигателем (ракетный ранец, rocket pack или rocket belt ).
  • ранец с турбореактивным двигателем (собственно реактивный ранец, jet pack или jet belt );

Ракетные ранцы весьма просты по конструкции, поэтому именно они получили распространение. Классический ракетный ранец конструкции Венделла Мура может быть изготовлен в условиях частной мастерской, хотя для этого требуются хорошая инженерная подготовка и высокий уровень слесарного мастерства. Главный недостаток ракетного ранца - малая продолжительность полёта (до 30 секунд) и большой расход дефицитного топлива - перекиси водорода . Эти обстоятельства ограничивают сферу применения ракетных ранцев весьма эффектными публичными демонстрационными полётами. Полёты на ракетных ранцах всегда захватывают внимание зрителей и имеют большой успех. Например, такой полёт был устроен в ходе торжественного открытия летних Олимпийских игр 1984 года в Лос-Анджелесе , США .

В последующих полётах Грэм отрабатывал технику управления ранцем и осваивал более сложные приёмы пилотирования . Он научился летать по кругу и разворачиваться на месте, перелетал через ручьи, автомобили, десятиметровые холмы, летал между деревьями. Всего с апреля по май было совершено 28 полётов. Венделл Мур добивался абсолютно надёжной работы от ранца и уверенного пилотирования от Грэма, чтобы затем не оплошать перед публикой. В ходе испытаний были достигнуты следующие максимальные показатели:

  • продолжительность полёта - 21 секунда;
  • дальность полёта - 120 метров;
  • высота - 10 метров;
  • скорость - 55 км/ч.

8 июня года ранец был впервые продемонстрирован публично - перед несколькими сотнями офицеров на военной базе Форт-Юстис (Fort Eustis ). Затем последовали другие публичные показы, в том числе знаменитый полёт во дворе Пентагона перед тремя тысячами сотрудников военного ведомства, которые с восторгом наблюдали, как Гарольд Грэм перелетает через легковую машину.

11 октября года (по другим данным - 12 октября ) ранец был продемонстрирован лично президенту Кеннеди в ходе показательных манёвров на военной базе Форт-Брагг (Fort Bragg ). Грэм взлетел с амфибии LST, перелетел через полосу воды , приземлился в нескольких метрах перед президентом и лихо отдал честь Главнокомандующему армии США. По свидетельству очевидцев, президент наблюдал за полётом, открыв рот от изумления.

Гарольд Грэм с обслуживающей командой объездили многие города США , побывали в Канаде , Мексике , Аргентине , Германии , Франции и других странах, каждый раз с огромным успехом демонстрируя ракетный ранец в действии перед широкой публикой.

Армия же была разочарована. Максимальная продолжительность полёта ракетного ранца составляла 21 секунду, дальность 120 метров. При этом ранец сопровождала целая команда обслуживающего персонала. За один двадцатисекундный полет расходовалось до 5 галлонов (19 литров) дефицитной перекиси водорода. По мнению военных, «Bell Rocket Belt» был скорее эффектной игрушкой, нежели эффективным транспортным средством. Расходы армии по контракту с «Белл Аэросистемс» составили 150 000 долларов , ещё 50 000 долларов потратила сама «Белл». От дальнейшего финансирования программы SRLD военные отказались, контракт был закончен.

Маленький видеоролик с записью одного из полётов Гарольда Грэма можно скачать . Размер 436 кбайт, формат asf, требует Windows Media Player.

Устройство и принцип действия ракетного ранца

Ракетный ранец «Bell Rocket Belt». Патент США № 3243144, 1966 г.

Все существующие ракетные ранцы основаны на конструкции ранца «Bell Rocket Belt», разработанной в - годах Венделлом Муром. Ранец Мура конструктивно состоит из двух основных частей:

  • Жёсткий стеклопластиковый корсет (8 ), закреплённый на теле пилота системой ремней (10 ). Корсет имеет сзади металлическую трубчатую раму, на которой установлены три баллона: два с жидкой перекисью водорода (6 ) и один со сжатым азотом (7 ). Когда пилот находится на земле, корсет распределяет вес ранца на спину и поясницу пилота.
  • Ракетный двигатель, подвижно установленный на шаровом шарнире (9 ) в верхней части корсета. Сам ракетный двигатель состоит из газогенератора (1 ) и двух жёстко соединённых с ним труб (2 ), которые заканчиваются реактивными соплами с управляемыми наконечниками (3 ). Двигатель жёстко соединён с двумя рычагами, которые проходят под руками пилота. Этими рычагами пилот наклоняет двигатель вперёд или назад, а также в стороны. На правом рычаге установлена поворотная рукоятка управления тягой (5 ), связанная тросиком с клапаном-регулятором (4 ) подачи топлива в двигатель. На левом рычаге установлена рулевая рукоятка, которая гибкими тягами связана с управляемыми наконечниками реактивных сопел.

Перекись водорода

Действие ракетного двигателя основано на реакции разложения перекиси водорода. Используется перекись водорода 90-процентной концентрации (это бесцветная жидкость плотностью 1,35 г/см³). Перекись водорода в чистом виде относительно устойчива, но при контакте с катализатором (например, с серебром) стремительно разлагается на воду и кислород , менее чем за 1/10 миллисекунды увеличиваясь в объёме в 5000 раз.

2H 2 O 2 → 2H 2 O + O 2

Реакция протекает экзотермически, то есть с выделением большого количества теплоты (~2500 кДж/кг). Образующаяся при этом парогазовая смесь имеет температуру 740 градусов Цельсия.

Принцип действия ракетного двигателя

Принцип действия двигателя ракетного ранца

На рисунке обозначены баллоны с перекисью водорода и баллон со сжатым азотом (давление около 40 атм). Пилот поворачивает рукоятку управления тягой двигателя, и клапан-регулятор (3 ) открывается. Сжатый азот (1 ) вытесняет жидкую перекись водорода (2 ), которая по трубкам поступает в газогенератор (4 ). Там она вступает в контакт с катализатором (тонкие серебряные пластины, покрытые слоем нитрата самария) и разлагается. Образовавшаяся парогазовая смесь высокого давления и температуры поступает в две трубы, выходящие из газогенератора (трубы покрыты слоем теплоизолятора, чтобы сократить потери тепла). Затем горячие газы поступают в реактивные сопла (сопло Лаваля), где сначала ускоряются, а затем расширяются, приобретая сверхзвуковую скорость и создавая реактивную тягу. Вся конструкция проста и надёжна, ракетный двигатель не имеет ни одной движущейся части.

Пилотирование ранца

Ранец имеет два рычага, жёстко связанных с двигательной установкой. Нажимая на эти рычаги, пилот заставляет сопла отклониться назад, и ранец летит вперёд. Соответственно, поднятие рычагов заставляет ранец двигаться назад. Можно наклонять двигательную установку и в стороны (благодаря шаровому шарниру), чтобы лететь боком.

Управление с помощью рычагов - довольно грубое, для более тонкого управления пилот использует рукоятку на левом рычаге. Эта рукоятка управляет наконечниками реактивных сопел. Наконечники (jetavators ) подпружинены и могут с помощью гибких тяг отклоняться вперёд или назад. Наклоняя рукоятку вперёд или назад, пилот отклоняет синхронно наконечники обоих сопл, чтобы лететь прямолинейно. Если пилоту нужно выполнить поворот, он поворачивает рукоятку, при этом сопла отклоняются в противоположных направлениях, одно вперёд, другое назад, разворачивая пилота и ранец вокруг оси. Сочетанием различных движений рукоятки и рычагов пилот может лететь в любую сторону, даже боком, выполнять повороты, вращение на месте и т. п.

Управлять полётом ранца можно и по-другому - изменяя положение центра тяжести тела. Например, если согнуть ноги и поднять их к животу, центр тяжести сместится вперёд, ранец наклонится и тоже полетит вперёд. Такое управление ранцем, при помощи собственного тела, считается неверным и характерно для новичков. Опытнейший пилот Билл Сьютор утверждает, что во время полёта необходимо держать ноги вместе и прямо, а управлять полётом следует с помощью рычагов и рукояток ранца. Только так можно научиться грамотно пилотировать ранец и уверенно выполнять сложные маневры в воздухе.

два рычага, жёстко связанных с двигательной установкой. Нажимая на эти рычаги, пилот заставляет сопла отклониться

На правом рычаге установлена поворотная «рукоятка газа». В неподвижном состоянии она полностью закрывает регулятор подачи топлива в двигатель. Поворачивая рукоятку против часовой стрелки, пилот увеличивает тягу двигателя. Во время заправки ранца сжатым азотом рукоятка фиксируется в запертом положении предохранительной чекой.

На этой же рукоятке расположен таймер. Поскольку ранец имеет запас топлива лишь на 21 секунду полёта, пилоту необходимо знать, что у него заканчивается топливо, чтобы не оказаться с пустыми баками на высоте в 10 метров. Перед полётом таймер взводится на 21 секунду. Когда пилот поворачивает рукоятку для взлёта, таймер начинает отсчёт и подаёт ежесекундные сигналы на зуммер в шлеме пилота. Через пятнадцать секунд сигнал становится непрерывным, сообщая пилоту, что пора идти на посадку.

Особенности полётов на ракетном ранце

Пилот ранца облачён в защитный комбинезон из термостойкого материала, поскольку и реактивная струя, и трубы двигателя имеют очень высокую температуру. На голову в обязательном порядке надевается защитный шлем (он также имеет внутри сигнальный зуммер).

При работе ракетного двигателя сверхзвуковая реактивная струя издаёт оглушительно громкий звук (силой до 130 дБ), больше напоминающий пронзительный визг, чем рёв реактивного двигателя. Ракетный ранец - очень шумный летательный аппарат.

Как правило, выходящая реактивная струя прозрачна и в воздухе не видна. Но в холодную погоду водяной пар, составляющий большую часть парогазовой смеси, конденсируется вскоре после выхода из сопл, и тогда пилота окутывает целое облако водяного тумана. Именно по этой причине самые первые «привязные» полёты ранца «Bell Rocket Belt» выполнялись в ангаре - дело было зимой. Также реактивная струя бывает видна, если топливо в газогенераторе разлагается не полностью, что случается, например, при плохой работе катализатора или при загрязнении перекиси водорода примесями.

Современные версии ранца

Технические характеристики ракетного ранца
Bell Rocket Belt RB 2000 Rocket Belt
Продолжительность полёта 21 с 30 с
Тяга двигателя 136 кгс (расчетная 127) 145 кгс
Максимальная дальность полета около 250 метров
Максимальная высота полета 18 м 30 м
Максимальная скорость 55 км/ч 96 км/ч
Снаряжённый вес 57 кг 60 кг
Запас топлива 19 л 23 л

В 1995 году конструкция ранца была усовершенствована. Трое инженеров из Техаса, Брэд Баркер, Джо Райт и Ларри Стэнли, пригласив профессионального изобретателя Дуга Малевики (Doug Malewicki ), построили новую версию ракетного ранца, который они назвали «RB 2000 Rocket Belt ». Ранец «RB 2000» в основном повторяет конструкцию Венделла Мура, но сделан из лёгких сплавов (титан , алюминий) и композитных материалов, имеет увеличенный запас топлива и повышенную мощность. В результате максимальная продолжительность полёта увеличена до 30 секунд.

Турбореактивный ранец (Bell Jet Flying Belt)

В 1965 году «Белл Аэросистемс» заключила новый контракт с военным агентством ARPA - на разработку ранца, который по полному праву назывался бы реактивным, - ранца с настоящим турбореактивным двигателем. Проект получил название «Jet Flying Belt», или просто «Jet Belt». Над проектом нового, турбореактивного ранца работали Венделл Мур и Джон Налберт (John K. Hulbert ), специалист по газовым турбинам. Специально для нового ранца компания «Williams Research Corp.» по заказу «Белл» спроектировала и изготовила турбореактивный двигатель WR-19, с силой тяги 195 кгс и весом 31 кг. К 1969 году новый ранец был создан.

7 апреля 1969 года на аэродроме Ниагара Фоллз состоялся первый свободный полет турбореактивного ранца «Jet Belt». Пилот Роберт Куртер (Robert Courter ) пролетел около 100 метров по кругу на высоте 7 метров, достигнув скорости 45 км/ч. Следующие полёты были более продолжительными, до 5 минут. Теоретически новый ранец мог находиться в воздухе до 25 минут и развивать скорость до 135 км/ч.

Несмотря на успешные испытания, армия снова не проявила заинтересованности. Ранец был сложным в обращении и слишком тяжёлым. Приземление пилота с таким грузом на плечах было небезопасным. Кроме того, при повреждении двигателя лопатки турбин могли разлетаться с высокими скоростями, угрожая жизни пилота.

Ранец «Bell Jet Flying Belt» так и остался экспериментальным образцом. 29 мая 1969 года Венделл Мур умер от болезни, и работы по турбореактивному ранцу были свёрнуты. Единственный экземпляр ранца «Белл» продала компании «Williams» вместе с патентами и технической документацией. Этот ранец в настоящее время находится в музее «Williams Research Corp.»

Особенности устройства турбореактивного ранца

Ранец «Jet Belt» имеет турбореактивный двигатель WR-19. Масса двигателя 31 кг, тяга 195 кг, диаметр 30 см. Двигатель установлен вертикально, воздухозаборником вниз (1 ). Входящий воздух сжимается компрессором и разделяется на два потока. Один поток идёт в камеру сгорания. Второй поток проходит между двойными стенками двигателя, затем смешивается с потоком выходящих горячих газов, охлаждая их и защищая пилота от высокой температуры. В верхней части двигателя смешанный поток разделяется и поступает в две трубы, ведущие к реактивным соплам (2 ). Конструкция сопел позволяет отклонять реактивную струю в любую сторону. Топливо (керосин) находится в баках (3 ) по бокам двигателя.

Управление турбореактивным ранцем похоже на управление ракетного ранца, но пилот уже не может наклонять всю двигательную установку. Маневрирование выполняется только отклонением управляемых сопел. Наклоняя рычаги, пилот отклоняет реактивную струю обоих сопел вперёд, назад или в стороны. Поворотом левой рукоятки пилот поворачивает ранец. Правая рукоятка, как обычно, управляет тягой двигателя.

Запуск реактивного двигателя осуществляется с помощью порохового пиропатрона . На испытаниях для запуска использовали передвижной стартер на специальной тележке. Имеются приборы для контроля работы двигателя и рация для связи и передачи телеметрической информации наземным инженерам.

Сверху на ранце установлен парашют (4 ) (используется стандартный десантный запасной парашют). Он эффективен только при открытии на высоте более 20 метров.

Ракетный ранец в шоу-бизнесе

В 60-х годах ракетный ранец «Bell Rocket Belt» находился на пике популярности. Компания «Белл» устраивала демонстрационные полёты в США и других странах, каждый раз вызывая восторг публики.

в 1965 году на экраны вышел новый фильм из серии про Джеймса Бонда , «Thunderball». Бонд (в исполнении Шона Коннери) проникает во французский замок, где укрывается агент таинственной организации «SPECTRE». Бонд ликвидирует противника, затем удирает от охраны на крышу замка и улетает на заранее спрятанном ракетном ранце.

В съёмках фильма было задействовано два ранца. Один, бутафорский, можно увидеть на Шоне Коннери в крупноплановых сценах. Второй был самым настоящим ранцем «Bell Rocket Belt» и летал вживую. Им управляли пилоты компании «Белл» - Билл Сьютор и Гордон Йегер (Gordon Yaeger ). Сцены с Шоном Коннери и ранцем пришлось снимать дважды, потому что в первый раз его отсняли с непокрытой головой, а дублировавший его Билл Сьютор наотрез отказался взлетать без защитного шлема. При озвучании фильма настоящий пронзительный рёв двигателя ранца заменили шипением

Реактивные ранцы должны поднимать пассажира на достаточно большую высоту и удерживать на ней в течение некоторого времени - из-за этого сильно растет вероятность того, что несчастный случай (например, взрыв баллона с перекисью водорода или проблемы с управлением) приведет к смертельному исходу. Несмотря на то, что в последние годы индустрия реактивных ранцев достаточно быстро развивалась, до сих пор этот вопрос не решен: именно поэтому большинство испытаний реактивных ранцев проходят над водой.

Реактивный ранец

Принцип работы реактивного ранца довольно прост. В баллонах типа акваланга под давлением сжатого воздуха находится концентрированная перекись водорода. Пилот управляет клапаном, который открывает перекиси выход наружу. Дальше перекись водорода подаётся в аналог камеры сгорания. Внутри камеры находится каталитическое покрытие, при контакте с ним перекись немедленно разлагается с выделением большого количества тепла на кислород и водяной пар. Перегретый пар и газ из камеры сгорания поступают в сопла, это и дает тягу. Положением сопел, как и открытием дроссельного клапана, управляет пилот. В результате у него в руках две рукоятки наподобие мотоциклетных. Схема с катализатором и перекисью проста, так как не требует систем поджига топлива (и вообще топлива). Не стоит забывать, что концентрированная перекись водорода опасна и дорога, а сам каталитический вкладыш тоже недёшев и его надо время от времени менять, так как он выгорает. Главное, чтобы он не выгорел в момент полёта, иначе тяга прекратится.

Реактивный ранец. Схема.

Реактивное движение основано на преобразовании внутренней энергии топлива в кинетическую энергию истекающих газов, которые и дают реактивную силу. На самом деле, полезность таких устройств, для полёта человека, очень ограничена, так как сложно обеспечить надёжную стабилизацию и управляемость для всех возможных условий и возможных ошибок пилотирования, да и скорость их невысока (нет крыльев, чтоб уравновесить силу тяжести в горизонтальном полёте).

Первая смерть

Тем не менее, энтузиасты все же поднимаются в воздух на реактивных ранцах без какой-либо дополнительной страховки над землей. Случай, произошедший в Пуэрто-Рико , - первая известная на сегодняшний день авария на реактивном ранце со смертельным исходом. Подробности случившегося пока не сообщаются: по неизвестным причинам реактивный ранец Ричеса взорвался, когда тот находился на высоте около семи метров. После падения его отвезли в местную больницу, где он скончался от полученных травм. Помимо самого Ричеса от выхода устройства из строя никто не пострадал.

Реактивный ранец после падения.

Ховерборды

Один из самых известных энтузиастов в области развития реактивных ранцев — основатель компании Zapata Фрэнки Запата (Frankie Zapata). В августе этого года ему удалось со второй попытки перелететь на своем реактивном ранце пролив Ла-Манш: весь путь занял 22 минуты. Его ховерборд Flyboard - платформа, на которую пилот встает ногами и закрепляется на ней. В аппарате используются четыре основных турбореактивных двигателя в центре, а также два боковых двигателя меньшей тяги для стабилизации полета. В качестве топлива ховерборд использует керосин, который размещается в баке в ранце, надеваемом пилотом. Ховерборд сохраняет стабильное положение отчасти благодаря собственной системе стабилизации, а отчасти благодаря движениям пилота. Максимальная скорость полета на Flyboard Air составляет 170 километров в час.

Персональные реактивные летательные аппараты разрабатывают и другие компании. Например, JetPack Aviation создала реактивный ранец, способный разгоняться до 320 километров в час. В начале 2019 года компания объявила, что начала работать над реактивным ховербайком, предназначенным как для гражданского, так и для военного применения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Sp-force-hide { display: none;}.sp-form { display: block; background: #ffffff; padding: 15px; width: 960px; max-width: 100%; border-radius: 5px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-color: #dddddd; border-style: solid; border-width: 1px; font-family: Arial, "Helvetica Neue", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 930px;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; background-color: #0089bf; color: #ffffff; width: auto; font-weight: 700; font-style: normal; font-family: Arial, sans-serif;}.sp-form .sp-button-container { text-align: left;}

JB-10
JetPack

JB-11
JetPack


▸ SPECS

Empty Weight (lbs): 83

Max Thrust (lbs @ ISA)*: 395

Max speed (mph): > 120

Endurance (mins)**: 8

Fuel: Kerosene/diesel

Operating Ceiling (ft): 15,000

▸ Description

The JB10 is very similar to the JB9 other than an increase in fuel capacity and thrust as well as more sophisticated computer engine controls and pilot displays. We don’t produce the JB9 any longer but it is the version that our CEO flew around the Statue of Liberty in 2015.

The Experimental version has no speed or fuel limits however the pilot must hold at least a sports or recreational pilots license and have been trained and signed off by JPA. We remain the only authorized Jetpack instructors in the world.

▸ Price

PRICE UPON PRIVATE REQUEST

▸ SPECS

Empty Weight (lbs): 115

Max Thrust (lbs @ ISA)*: 530

Max speed (mph): > 120

Endurance (mins)**: 10

Fuel: Kerosene/diesel

Operating Ceiling (ft) 15,000

Piloted/Fully autonomous: Piloted

*Maximum thrust can vary depending on density altitude

**Endurance is dependent on pilot weight and density altitude

▸ Description

The JB 11 is powered by six turbo jet engines specially modified for vertical flight. Each engine produces approximately 90lbs of thrust. A sophisticated engine computer balances thrust between engines and in the unlikely case of an engine failure it will enable the pilot to maintain control and land. We design all computer hardware and write all code in-house.

The JB11 can carry a heavier fuel load and hence has longer endurance than the JB10.

As for the JB10, the JB11 can be operated either in the Ultralight or Experimental category.

▸ Price

PRICE UPON PRIVATE REQUEST

JB-10
JetPack

▸ SPECS

Empty Weight (lbs): 83

Max Thrust (lbs @ ISA)*: 395

Max speed (mph): > 120

Endurance (mins)**: 8

Fuel: Kerosene/diesel

Operating Ceiling (ft): 18,000

Piloted/Fully autonomous: Piloted

*Maximum thrust can vary depending on density altitude and

**Endurance is dependent on pilot weight and density altitude

▸ Description

The JB10 is very similar to the JB9 other than an increase in thrust and more sophisticated computer engine controls and pilot displays. We don’t produce the JB9 any longer but is the version that our CEO flew around the Statue of Liberty in 2015.

The JB10 is powered by two specially modified turbojet engines, each producing approximately 200lbs of thrust (at standard atmospheric conditions) It can run on kerosene, JetA or diesel.

The JB10 is best known for the flights that we have made over the last couple of years, both in America and internationally, including in support of the Red Bull Air Race events.

As with the JB9 and JB11 Jetpacks, control is achieved by the pilot vectoring the entire engine, rather than just vectoring thrust. This is how we achieve such great manoeuvrability and speed control.

JPA produces an Ultralight category version and an Experimental category version. The Ultralight version is speed limited to 55 kts (approx 65mph) and to 5 gallons of fuel. It can however be flown (at least under American FAA rules) without needing a pilot’s licence.

The Experimental version has no speed or fuel limits however the pilot must be must hold at least a sports or recreational pilots license and have been trained and signed off by JPA. We remain the only authorized Jetpack instructors in the world.

▸ Price